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The particle-based lattice solid model developed to study the physics of rocks and
the nonlinear dynamics of earthquakes is refined by incorporating intrinsic friction
between particles. The model provides a means for studying the causes of seismic
wave attenuation, as well as frictional heat generation, fault zone evolution, and
localisation phenomena. A modified velocity–Verlat scheme that allows friction to
be precisely modelled is developed. This is a difficult computational problem given
that a discontinuity must be accurately simulated by the numerical approach (i.e., the
transition from static to dynamical frictional behaviour). This is achieved using a half
time step integration scheme. At each half time step, a nonlinear system is solved to
compute the static frictional forces and states of touching particle-pairs. Improved
efficiency is achieved by adaptively adjusting the time step increment, depending on
the particle velocities in the system. The total energy is calculated and verified to
remain constant to a high precision during simulations. Numerical experiments show
that the model can be applied to the study of earthquake dynamics, the stick–slip
instability, heat generation, and fault zone evolution. Such experiments may lead
to a conclusive resolution of the heat flow paradox and improved understanding of
earthquake precursory phenomena and dynamics.c© 1999 Academic Press
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INTRODUCTION

The “lattice solid model” (Mora [14]) consists of a lattice of interacting particles and was
motivated by short range molecular dynamics concepts. In the model, particles represent
grains of rock and interactions are specified accordingly. The model was developed in order
to study fracturing (Mora and Place [15]), wave propagation in complex discontinuous
media, faulting (Donz´e et al. [7]) and the stick–slip instability which is responsible for
earthquakes (Mora and Place [16]).

In the initial version, only elastic interactions in which particles of a model rock matrix
were linked by elastic–brittle bonds were specified. Despite the simplicity of the interac-
tions, realistic stick–slip frictional behaviour was observed during numerical experiments
involving two elastic–brittle blocks with rough surfaces being pushed past one another at a
constant rate. During the “stick” phase, the stress in the solid built up until two interlock-
ing asperities of the fault pushed past one another, releasing some of the stress, initiating
slip of the two blocks, and exciting a slip pulse which propagated along the fault. During
the propagation of the slip pulse, fault normal motions were observed. The results show
that even using simple elastic interactions the model was capable of reproducing stick–slip
frictional behaviour and slip pulses compatible with those measured in field and laboratory
experiments.

A long standing paradox in earthquake studies has been the low heat flow observed
around the San Andreas fault compared with the theoretical value computed using the value
of rock friction measured in laboratory experiments. To explain this paradox, Bruneet al.
[3] proposed that slip occurs during the passage of interface waves which locally reduce the
normal stress as they propagate along the fault. Numerical experiments (Mora and Place
[16]) using the lattice solid model have demonstrated the existence of slip pulses with
particle motions normal to the fault, similar to those observed by Brune and co-workers
[3] in stick–slip experiments involving foam rubber blocks. Early lattice solid simulations
did not model intrinsic friction between particles or heat generation so it was not possible
to determine whether the fault normal motions during the propagation of slip pulses were
sufficient to explain the heat flow paradox.

The lattice solid model was therefore extended to incorporate a simple intrinsic friction
between particles and to simulate heat generation. Additional computations required to
incorporate the effect of friction necessitated further refinement of the model.

In order to quantitatively study heat generation and to simulate frictional behaviour
(including the transition between static and dynamical behaviour), frictional forces must be
“accurately” computed and the discontinuity between static and dynamical behaviour must
be modelled. Heat is generated when two surfaces are slipping past one another (i.e., the
frictional behaviour is dynamic). When the surfaces are locked (i.e., the frictional behaviour
is static) no heat should be generated. Hence, the model is based on the assumption that
if two surfaces are locked by static friction, the slip velocity between these two surfaces
is zero (measured as the slip velocity between surface particles). The transition between
static and dynamic frictional behaviour is also an important consideration. Due to the time
discretisation, only linear processes can be simulated within a finite time step, so one takes
discontinuities into account when going from one time step to the next. However, within a
time step discontinuities may occur and one must take them into account before proceeding
to the next time step. Ignoring these discontinuities (that is, assuming that they occur only
at the instant between two time steps) can yield incorrect frictional behaviour.
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In this paper, we develop an approach, the lattice solid approach, that seeks the static
frictional force such that no slip is allowed when two surfaces are locked by static friction.
The approach consists of solving a nonlinear system to compute the effective frictional
forces that must be applied during a time step. Frictional forces are computed such that
the transition between static and dynamic behaviour is captured within a time step by
introducing an intermediate state in which particles are bouncing (when the direction of
the slip reverses but the slip does not stop), starting to slip, or stopping. The precision with
which the lattice solid approach computes static frictional forces, defined as the amount of
slip between surface particles that are locked by static friction, is compared to the precision
of two other methods. The first is based on a simple iterative method that attempts to
capture the transition between static and dynamic behaviour and was first used in studies of
the effect of intrinsic friction on the dynamics of earthquakes (Mora and Place [17], Place
and Mora [22]). The second method is based on the Distinct Element Model proposed by
Cundall and Strack [6], which provides a simple and natural way to compute frictional
forces. Comparisons involve determining how closely energy remains constant during the
simulation and calculating a heat error term that relates to the amount of slip observed
between particles locked by static friction.

LATTICE SOLID MODEL

The particles in the lattice solid model, like the particles in short range molecular dynam-
ics, interact with each other. However, particles represent grains or units of rock that may
range from grain size to tens of metres in diameter. Particles are used as the building blocks
of grains of rocks. The smallest indivisible unit of the system is specified by groupings of
several strongly bonded particles. These groups can be considered as idealised unbreakable
grains or units of rock. This approach enables the nonlinear behaviour of discontinuous
solids to be simulated with relative simplicity.

LATTICE STRUCTURE

On the scale of a laboratory experiment in which rock friction is studied, particles in the
model represent grain-sized units of rock. Particles are arranged in a regular two dimensional
triangular lattice and linked by breakable bonds (Fig. 1). Although rocks are discontinuous
at many scales (e.g., rocks contain both micro- and macro-fractures and are made up of

FIG. 1. Closeup of a 2D close-packed lattice of bonded particles with a horizontal fault. The fault is specified
as an irregularly shaped rupture in the lattice in which particles on the upper block are not bonded to particles on
the lower block.
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grains with different chemical compositions), isotropic elasticity is a good approximation
for rock behaviour in the small strain macroscopic limit. In the macroscopic limit and
assuming radial pairwise particle interactions, the triangular lattice solid structure has the
elastic properties of an isotropic solid with a compressional wave speed

√
3 times the shear

wave speed (Aki and Richards [1, p. 4]), very similar to that of typical crustal rocks. The
disadvantage of such a regular structure is that the fracture behaviour is anisotropic (Mora
and Place [15]) and would be more comparable to that of a pure crystal. In order to enable
isotropic fracturing behaviour to be modelled more like that of rock, different particle sizes
or a random lattice should be used (Christet al. [5]).

GRAINS AND PARTICLES

To enable isotropic fracturing and to obtain more realistic behavior at the smallest scale in
the model, particles are grouped into “grains” of different sizes and shapes. Bonds, linking
particles inside a grain, are set to be much stronger than bonds that link particles belonging
to different grains (i.e., grains are made of material stronger than the overall strength of
the material being modelled). Grains can be considered the smallest indivisible units of
the system. Rotational dynamics is simulated at the grain scale as a consequence of linear
momentum conservation of the bonded particles in a grain although it is not modelled at the
particle scale. Furthermore, this kind of grouping of particles into grains allows isotropic
fracturing to be modelled. This is because grains can be made of a variable number of
particles, and hence have different sizes and shapes.

Grains of rocks are deformed when subjected to a shear stress. These deformations can
be modelled at the particle scale by introducing a “soft” shear constraint at the particle
scale (i.e., the particle has a shear elasticity). This approach has been developed by Cundall
and co-workers [6] and introduces a shear stiffness at the particle scale. The shear stiffness
should be chosen such that the elastic properties of a granular medium relative to those
of an equivalent bonded system of grains remain unchanged (i.e., such that Poisson’s ratio
σ of the solid being modelled isσ ∼ 1/3, as for real rocks). In our model, a “rigid” shear
constraint is used. Hence particles are rigid and cannot be deformed when subjected to shear
stress. By grouping particles to form grains, shear deformations can effectively take place
because bonds inside a grain are stretched or compressed.

Because the smallest indivisible unit of the system is now composed of several parti-
cles, this approach requires a large number of particles to simulate the same number of
grains of rock. Typically, 128× 128 particles are used, and, in order to have a sufficient
number of grains, the grains are composed of only a small number of particles (e.g., 3 to
10 particles). Also typically, four different shapes of grains of model rock are used: elon-
gated hexagon (composed of 10 particles), hexagon (7 particles), diamond (4 particles), and
triangle (3 particles).

SIMPLE PARTICLE INTERACTIONS WITHOUT INTRINSIC FRICTION

Particles are bonded by linear elastic bonds that break when the separation exceeds a given
threshold. This is expressed through a parabolic potential function that is radially dependent
(Fig. 2, Eq. (1)). When a given separation (rbreak) is reached, the bond breaks irreversibly.
When the bond is broken, particles are free to move apart and only the repulsive part of the
interaction remains unchanged (i.e., the potential function becomes a half parabola).
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FIG. 2. Effective inter-particle potential. Bonded particles (dashed line) repel one another when the separation
is less than the equilibrium separationr0, and attract one another when the separation is greater thanr0. Unbonded
particles (dotted line) repel one another when the separation is less thanr0 and do not interact when the separation
is greater thanr0.

The potential function described above is specified as

V(r ) =
{

V0+ 1
2k(r − r0)

2, r ≤ R

V(R), r > R,
(1)

wherek is the spring constant of the bond andr0 is the equilibrium separation. The range
R where the potential becomes flat is given by

R= R(t) =
{

rbreak, r (τ ) < rbreak for all τ < t

r0, otherwise,
(2)

where the radial separationr is computed using

r = rnm= |xn − xm|, (3)

V0 = − 1
2k(rbreak− r0)

2, (4)

with xn andxm respectively denoting the positions of particlen and particlemandt denoting
the current time.

Different values for the breaking separationrbreak are used to specify material with dif-
ferent strengths, with values typically ranging from 1.01r0 to 1.5r0 (i.e., much higher than
the range of breaking criteria under dilation for macroscopic failure of rocks). A value of
1.5r0 is used to inhibit fracture and focus only on studying the effect of friction, elastic
interaction, and fault geometry. A high value of the breaking separation is also used to
prevent grains from breaking down into single particles that may interact “unrealistically”
with other grains (single particles have an infinite shear stiffness, unlike grains of real rock,
and are not allowed to rotate). Unbreakable material may also be used to prevent formation
of a fault gouge if, for instance, the goal of the simulation is to study only the effect of
surface roughness and/or intrinsic friction.

The elastic force on particlen is given by the sum of all pair forces

FI
n =

∑
m6=n

F(2)nm. (5)
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The force on particlen due to a particlem for a given spring constantk is

F(2)nm=
{−k(r − r0)er , r ≤ R

0, r > R,
(6)

where the unit vector pointing from particlem to particlen is

er = xn − xm

r
. (7)

An artificial viscosity is added to damp the reflected waves from the rigid edges of the
lattice and to avoid buildup of kinetic energy in the closed system. The viscosity is frequency
independent and does not fundamentally alter the dynamics of the system if carefully chosen
(Mora and Place [16]). The total force on particlen is

Fn = FI
n + Fνn, (8)

where the viscous force is given by

Fνn = −νẋn. (9)

INTRINSIC FRICTION

Early simulations using the lattice solid model (without intrinsic friction) have shown
that the model is capable of simulating the stick–slip instability and slip pulses. However,
since heat generation was not modelled, questions such as Can the slip pulse locally reduce
the normal stress sufficiently to explain the anomalously low heat flow observed around the
San Andreas fault? could not be answered. Heat in real solids relates to quantised lattice
vibrations (kinetic energy) at the microscopic scale. These lattice vibrations are generated
when microscopically rough surfaces slip past one another. Roughness at the microscopic
scale (at the particle scale for the model) can be modelled using a “friction law.” Hence we
incorporate an intrinsic friction at the particle scale to model heat generation. Heat is then
defined as the work done by intrinsic friction.

When two grain surfaces are in contact and slipping past one another, a dynamic frictional
force opposes the direction of slip. The two surfaces stop slipping when the external forces
that cause the surfaces to slip no longer exceed the dynamic frictional forces. Then, the two
surfaces are locked by static friction. We are interested in modelling frictional processes of
faults, and we decided to be demanding with regard to modelling of static friction. When
two surfaces are locked by static friction, no slip is allowed between surfaces before the
shear force overcomes the static friction. Frictional forces are applied at the surface particle
centres and not at the surface of the surface particles where the contact actually occurs (this
effectively means that frictional forces exert slightly less torque than they should, making
it harder to rotate grains). Slip velocity between grain surfaces is computed as the slip
velocity between the centres of mass of surface particles that are in contact. Three different
approaches for modelling this kind of frictional interaction will be discussed in the next
section.

A simple intrinsic friction corresponding to Coulomb friction is added to the model when
two surface particles that are not bonded come in contact (i.e., repel one another). For a given



338 PLACE AND MORA

intrinsic frictional coefficientµ, a tangential accelerationad
ij due to the dynamic frictional

force between the particlesi and j is computed, and its direction is opposite that of the
tangential movement between particles. If the tangential acceleration required to stop slip
between particles after one time step is greater than the dynamic accelerationad

ij , then the
two particles are allowed to slip and the acceleration due to the dynamic frictional force
(Mad

ij ) is applied. Otherwise, particles are locked by a static frictional force which is lower
than the dynamic frictional force and must be determined.

The dynamic frictional acceleration used here is velocity independent and is proportional
to the normal force (stress) between particles, namely

ad
ij = µ

k

M

r0− r ij

r0
, (10)

whereM is the particle mass. The total acceleration of particlen resulting from all elastic
and frictional interactions is given by

ẍi (t) = ẍ0
i (t)+

∑
l∈Pi

ẍF
il (t), (11)

wherePi denotes the set of unbonded particles interacting with particlei, ẍF
il is the effective

frictional acceleration for particle-pairil due to the dynamic or static frictional force, and
ẍ0

i (t) denotes the value of the acceleration before the frictional acceleration is added. This
elastic acceleration is given by

ẍ0
n(t) =

Fn(t)

M
. (12)

The tangential velocitẏxT
ij and acceleration̈xT

ij of a particle-pairij are computed relative
to the midpoint of the particle-pair and are respectively given by

ẋT
ij (t) = (ẋi (t)− ẋ j (t)) · eT

ij , (13)

and

ẍT
ij (t) = (ẍi (t)− ẍ j (t)) · eT

ij , (14)

where particle velocities(ẋi ) are updated using a modified velocity–Verlat scheme, de-
scribed in the next section. The tangential unit vector of particle-pairij , denotedeT

ij , is given
by

eT
ij =

ẋij − (ẋij · er )er

|ẋij − (ẋij · er )er | , (15)

with ẋij defined as

ẋij = ẋi − ẋ j . (16)

Before one computes the effective frictional acceleration (ẍF
il ) in Eq. (11), the numerical

integration (to compute particle velocities and positions) must be cast in such a way that
one can compute the frictional forces that take into account discontinuities that may occur
during a time step (i.e., bond breaking yields a discontinuity in force), as does the transition
between dynamic and static frictional behaviour.
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HALF TIME STEP INTEGRATION

The numerical integration is based on a velocity–Verlat scheme (Allen and Tildesley [2])
given by

xn(t +1t) = xn(t)+1t ẋn(t)+ 1t2

2
ẍn(t), (17)

ẋn(t +1t) = ẋn(t)+1t
ẍn(t)+ ẍn(t +1t)

2
, (18)

where the velocity is updated using the value of the acceleration at the middle of the time step
(computed by averaging the accelerations at the beginning and end of the time step). The
velocity–Verlat scheme assumes that accelerations are continuous during a time step. Due
to bond breaking, a discontinuity may occur during the time step. Bonds are forced to break
exactly at timet , when the displacements are computed, in order to capture the discontinuity
precisely. Therefore, the elastic force changes at timet if bond breaking has occurred. In
other words, the elastic accelerations (ẍ0

n) at t − ε (denotedt−) andt + ε (denotedt+) are
different. As the static frictional forces depend on all other forces acting on particles, this
discontinuity in elastic forces includes a discontinuity in frictional forces. Hence, different
elastic and frictional forces must be applied att − ε andt + ε. This is achieved using a half
time step integration approach in which the time step is centred ont . Forcing bond breaking
to occur at timet in the model (i.e., the middle of the time step) allows the effect of delaying
the fracture as a result of the time discretisation to be minimised. With a full time step
integration, bonds will be broken att + 1t

2 just before one proceeds to the next time step.
Hence, the interactions would have been computed as if the bond were unbroken. Therefore
the half time step integration allows the discontinuity to be captured more precisely without
using a smaller time step interval.

A full time step goes fromt − 1t
2 to t + 1t

2 , where the particle positions are updated att
and particle accelerations are computed att− andt+. The particle positions and velocities
are consequently updated using

xn(t +1t) = xn(t)+1t ẋn(t)+ 1t2

2
ẍn(t

+), (19)

ẋn(t +1t) = ẋn(t)+1t
ẍn(t+)+ ẍn(t− +1t)

2
. (20)

We can write the updating of velocities as

ẋn

(
t + 1t

2

)
= ẋn(t)+ 1t

2
ẍn(t

+), (21)

ẋn(t +1t) = ẋn

(
t + 1t

2

)
+ 1t

2
ẍn(t

− +1t), (22)

or equivalently,

ẋn(t) = ẋn

(
t − 1t

2

)
+ 1t

2
ẍn(t

−), (23)

ẋn

(
t + 1t

2

)
= ẋn(t)+ 1t

2
ẍn(t

+), (24)
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whereẍn(t−) andẍn(t+) are the particle accelerations before and after bond breaking. We
express these two steps using a single equation as

ẋn(τ +1τ) = ẋn(τ )+1τ ẍn(T), (25)

where1τ = 1t
2 and

T =
{

t+, τ = t

t−, τ = t − 1t
2 .

(26)

The forces due to the viscosity are computed at timet when the velocity is known.

VISCOSITY

The half time step velocity–Verlat scheme requires the values of the particle accelerations
at t− in order to update the particle velocities at timet (cf. Eq. (23)). The accelerations are
computed from the frictional forces, elastic forces, and viscous forces (Eqs. (11), (12), and
(8)). The viscous forces are computed using Eq. (9), which requires the values of the particle
velocities. To summarise, in order to update the particle velocities at timet , the viscous
forces at timet must be computed, but these require the values of particle velocities at
timet . Consequently, the forces due to the artificial viscosity are computed using an iterative
algorithm. Table I specifies the algorithm used when elastic and viscous forces only are
modelled. Incorporation of artificial viscosity during modelling of frictional forces will be
discussed in the next section.

COMPUTATION OF FRICTIONAL FORCES

Before describing our numerical approach, we will consider two simple methods of
computing frictional forces. The purpose of the frist one is to compute a value for the
frictional force that precisely stops slip between particles in static frictional contact; the
second method is based on the Distinct Element Model proposed by Cundall and co-workers
[6, 8]. A detailed comparison between our approach and the two methods is shown in the
Appendix.

TABLE I

Computation of Viscous Forces

do for all particles n
Fνn(t)=−νẋn(t)
ẍ0

n(t
−)= 1

M

(
FI

n(t
−)+Fνn(t)

)
ẋn(t)= ẋn

(
t − 1t

2

)+ 1t
2

ẍ0
n(t
−)

until converged

Note.The elastic forces are computed att − ε
(denotedFI

n(t
−)) before bonds are broken.
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A SIMPLE APPROACH

The following approach is based on the assumption that one can isolate and solve the
frictional interaction between two particles without considering frictional interactions with
other particles. Once elastic and viscous forces acting on each particle are known, the
frictional forces are applied. This is done assuming that there will be no change in external
forces (that is, all forces including frictional forces that act on a particle) while the frictional
forces are applied. As the other frictional forces acting on a given particle do change the
external force acting on it, iterations are needed. The “simple” iterative method consists
of computing the “static” acceleration required to stop slip between particles during a half
time step1τ = 1t

2 . The tangential velocity (given by Eqs. (25) and (13)) at the end of the
half time step will be

ẋT
ij (τ +1τ) = ẋT

ij (τ )+1τ
(
(aex)ij (T)+ ẍF

ij (T)
) · eT

ij , (27)

where the effective total acceleration due to all forces, excluding the frictional force on pair
ij , is

(aex)ij (T) = ẍ0
i (T)+

∑
l∈Pi ,l 6= j

ẍF
il (T). (28)

Therefore, the static frictional accelerationas
ij (T) that should be applied to stop slip

between particlei and particlej during a half time step interval1τ is calculated by setting
ẋT

ij (τ +1τ)= 0 andẍF
ij (T)=as

ij (T)e
T
ij in Eq. (27), yielding

as
ij (T) = −

ẋT
ij (τ )

1τ
− (aex)ij (T) · eT

ij . (29)

The effective frictional acceleration(ẍF
ij ) is computed as the minimum of the static and

dynamic acceleration using

ẍF
ij (T) = aF

ij (T)e
T
ij , (30)

and

aF
ij (T) =


− ẋT

ij (τ )∣∣ẋT
ij (τ )

∣∣ ∣∣ad
ij (T)

∣∣, ∣∣as
ij (T)

∣∣> ∣∣ad
ij (T)

∣∣
as

ij (T), otherwise,

(31)

whereaF
ij denotes the magnitude of the effective or applied frictional acceleration. The

applied frictional accelerations are computed by iterating Eqs. (29) and (31), starting from
aF

ij = 0, until convergence is achieved (no further change inaF
ij within a specified precision).

Unfortunately, this method is not stable because this approach assumes that forces acting
on a particle (Maex) will not change while the frictional forces are applied. When the
frictional forces are applied to a particlei , the forces acting on all particles that are in
contact with this particle change. Since these changes in forces are not considered, the
algorithm cannot “exactly” stop slip between particles locked by static friction. This results
in oscillation between the dynamic and static states when the values of static frictional
forces are close to the dynamic value. Hence, the transition between dynamic and static
behaviour is not accurately modelled. Instabilities are manifested as oscillations during the
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iterative procedure of particle-pairs between static and dynamic states (cf. the Appendix).
When complex interactions are involved, the oscillations of particle-pair states result in
non-convergence of the iterative algorithm.

CUNDALL APPROACH

In the lattice solid model, particles have a radial intrinsic elasticity that results in a normal
elastic force between interacting particles. Hence, a “normal stiffness” is introduced at the
particle scale and shear stiffness of a system of particles is a consequence of the geometric
arrangement of the triangular lattice. The triangular lattice has a shear modulusλ=

√
3

4 k
(Mora and Place [16]). The numerical approach proposed by P. A. Cundall applies the
same principle to shear forces at the particle scale in a granular medium interacting through
friction. In his model, two unbonded particles undergo elastic shear restoring forces until
these exceed a given threshold (Mad

ij ) and the particles are allowed to slip. Therefore, a “shear
stiffness” is effectively introduced at the particle scale that may modify the macroscopic
elastic properties of a given structure. In contrast, unbonded particles in static frictional
contact in the simple iterative approach described previously would be seen as having an
infinite shear stiffness.

The “shear stiffness” introduced at the particle scale can be seen as the shear deformation
occurring when two particles are locked by static friction. When the surfaces of two particles
are locked, the particles can be deformed, and hence slip will occur if this is measured as
the displacement between the two particle centres. The use of the “soft” shear constraint on
particles introduces an error due to the time discretisation: frictional forces are computed
from the particle displacement since the last time step. During the next time step, the
frictional forces applied may be too large or too small for the given time step increment and
may result in a change in the particle frictional behaviour (going from static to dynamic
frictional behaviour, for instance). Thus, transitions between static and dynamic frictional
behaviour may be delayed by up to a time step and transition between static and dynamic
states can incorrectly occur. In the Cundall approach, frictional forces also include the
restoring shear forces due to the particle elasticity. The fact that the frictional force does not
oppose the direction of slip is not indicative of an error in that case. However, changes in
frictional behaviour may occur when one restores forces due to the particle shear elasticity
changes (caused by overestimating or underestimating the frictional forces during a time
step) while the frictional force at the particle surface should remain static or dynamic. Hence,
the ability to capture the frictional discontinuity (changes between the static and dynamic
states) depends on the time step increment. In contrast, use of a “rigid” shear constraint and
the lattice solid approach allows the frictional behaviour within a time step to be captured
more precisely. Hence we choose to use a “rigid” shear constraint at the particle scale. In
comparing the lattice solid approach and the “Cundall approach,” this will require use of
infinite shear stiffness in Cundall’s method.

The resulting shear force in Cundall’s method is computed by accumulating variations
in shear forces using

Fs
ij (T +1τ) = Fs

ij (T)+1Fs
ij (T), (32)

where

1Fs
ij (T) = −Ks1Us

ij (T) (33)
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and

1Us
ij (T) = 1τ ẋT

ij (τ )e
T
ij , (34)

andKs denotes the joint stiffness (stress/displacement). The frictional acceleration is com-
puted from the shear force and is given by

ẍF
ij (T) = aF

ij (T)e
T
ij , (35)

where

aF
ij (T) =


as

ij (T)∣∣as
ij (T)
∣∣ ∣∣ad

ij (T)
∣∣, ∣∣as

ij (T)
∣∣> ∣∣ad

ij (T)
∣∣

as
ij (T), otherwise,

(36)

and

as
ij (T) =

1

M
Fs

ij (T) · eT
ij . (37)

This approach provides a stable, simple, and efficient way to compute the frictional
forces. To accurately simulate (under the given assumptions of our current model) static
frictional behaviour, slip between the surface particles of grains must be exactly stopped
when the contact is static. The joint stiffnessKs in the Cundall approach introduces a “soft”
shear constraint. To exactly stop slip between particles when the contact is static, the shear
constraint must be rigid, and hence the joint stiffnessKs must be infinite. As a result,
(cf. the Appendix) the transition between static and dynamic behaviour is not precisely
captured using a finite time step and a joint stiffnessKs ranging from 1 to 50 timesk.
This is manifested as slip between supposedly static particles. As explained previously,
the use of a “soft” shear constraint causes the frictional forces to be underestimated or
overestimated, thereby resulting in the possibility of incorrect transitions between static and
dynamic frictional behaviour. The lower the joint stiffness, the higher the underestimate or
overestimate of the frictional force. To capture the frictional discontinuity more precisely, a
large value ofKs must be used (i.e., particles are given greater shear rigidity). However, to
ensure numerical stability and accuracy, the time step increment must be chosen such that

1τ < 2c

√
M

2Ks
, (38)

wherec is a user-defined factor (typically,c= 0.1, depending on the number of contacts
that a particle can have simultaneously). Therefore a very small time step increment must
be used to obtain a precise computation of frictional forces such that slip between static
pairs is stopped, which results in excessively costly calculations.

A PRECISE NUMERICAL APPROACH (LATTICE SOLID APPROACH)

The computation of the frictional forces using the lattice solid approach consists of
accurately modelling discontinuities in the frictional behaviour (i.e., transition between
static and dynamic frictional behaviour) and solving for frictional forces by simultaneously
considering all interactions between particle-pairs. Slip between particles is stopped if
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particles are “static.” As in the iterative method described previously, this implies that
particles in static frictional contact have an infinite shear rigidity. In order to obtain elastic
behaviour similar to that of rocks, particles are grouped to form grains which represent the
smallest indivisible unit of the system. Hence grains in the model can be deformed when
subjected to shear or normal stress similarly to grains of rock. Slip between surface particles
that are in contact are “exactly” stopped (the slip velocity between the particle centres is
zero) if the frictional behaviour is static.

Because of our interest in precisely simulating static frictional behaviour in the proposed
model, shear interactions of surface particles (prior to slip) are rigid, while normal interac-
tions are “soft.” Since particles are always bonded with at least two other particles to form
a piece of model material or grain (i.e., the smallest grain is roughly triangular shaped),
what would have been seen as “rigid” shear interactions if one were at a particle scale
will actually be a “soft” interaction between grains (as a consequence of the imposition of
elastic shear resistance by the lattice geometry as the grains distort). In other words, shear
interactions between grains of model rock are “soft” not by definition at the particle scale
but as an emergent property.

This model therefore provides an approach more precise (under the given assumptions
of our current model) than the approaches of the two methods outlined previously (iterative
and Cundall approaches).

MODELLING FRICTIONAL DISCONTINUITIES

A particle-pair is “static” when the tangential velocity is zero; otherwise the particle-pair
is “dynamic.” Due to the time discretisation, particles may undergo a transition between
static and dynamic behavior during a time interval1τ . Therefore three more states are
distinguished (Fig. 3). The first two states are “stopping,” where particle-pairs are changing

FIG. 3. Theoretical dynamics of the five different particle-pair states, whereẋT
ij denotes the relative tangential

velocity between the particlesi and j, âF
ij denotes the theoretical frictional acceleration, and(aex)ij denotes the

external accelerations due to all forces excluding this frictional force. The theoretical accelerations are those of
the true dynamics corresponding to the five states that must be modelled.
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FIG. 4. Dynamics of stopping particle-pairs, whereẋT
ij denotes the relative tangential velocity between the

particlesi and j, âF
ij denotes the actual or theoretical frictional acceleration, and(aex)ij denotes the external

accelerations due to all forces except this frictional forceẍF
ij . Shown are actual or desired dynamics (left) and

effective dynamics (right) that yield an equivalent configuration (velocity) to the true dynamics at the end of the
half time step.

from dynamic to static, and “starting,” where particle-pairs are changing from static to
dynamic. The last state concerns dynamic particle-pairs with a tangential velocity that
changes in sign during the time interval1τ (the slip between the two particles does not
stop but the tangential velocity is zero at some instant during the half time step). These are
termed “bouncing” particle-pairs.

The time discretisation requires that all applied or “effective” forces be constant during
a time interval1τ : when the velocity from the acceleration is updated using the modified
velocity–Verlat scheme (Eq. (22)), the velocity obtained for the half time step is the one
obtained for a constant acceleration. Thus, we seek the effective frictional accelerationsẍF

ij

which yield the same dynamics (i.e., final velocity) as the theoretical frictional acceleration
âF

ij depicted in Fig. 3. For static particle-pairs, the frictional force is constant and equals
the force required to maintain the particle-pair static during the half time step and hence
ẍF

ij =−(aex)ij . Dynamic and starting particle-pairs have (by definition) a constant frictional
acceleration equal to the dynamic frictional acceleration(ad

ij ). Hence, the magnitude of the
effective frictional acceleration for dynamic and starting particle-pairs is|ẍF

ij | = |âF
ij | =ad

ij .
Stopping particle-pairs are static exactly at the end of the half time step, which is achieved
by applying an effective frictional force equal to the force required to stop slip between
the particles at the end of the time interval1τ (Fig. 4). This effective frictional force,
which depends on(aex)ij and the tangential velocity at the start of the time interval, must
be determined.

For bouncing particle-pairs, the effective frictional force is the weighted average of forces
which should be applied before and after the tangential velocity passes through zero (Fig. 5),

FIG. 5. Dynamics of bouncing particle-pairs, whereẋT
ij denotes the relative tangential velocity between the

particlesi and j, âF
ij denotes the actual or theoretical frictional acceleration, and(aex)ij denotes the external

accelerations due to all forces except this frictional force. Shown are actual or desired dynamics (left) and effective
dynamics (right) that yield an equivalent configuration (velocity) to the true dynamics at the end of the half time step.



346 PLACE AND MORA

thus yielding the same final velocity that would result from application of the true frictional
force,

ẋT (τ +1τ) = ẋT (τ )+1τ(ẍF
ij (T)+ (aex)ij (T)

) · eT
ij

= ẋT (τ )+1τ
(
1τ ′

1τ
âF

ij (T)+
1τ −1τ ′

1τ
âF

ij (T +1τ ′)+ (aex)ij (T)

)
· eT

ij ,

(39)

whereT is given by Eq. (26),τ +1τ ′ is the instant when the tangential velocity reaches
zero, and̂aF

ij (T) and âF
ij (T +1τ ′) are respectively the true frictional forces that must be

applied before and after the tangential velocity passes through zero. The effective frictional
acceleration for bouncing particle-pairs is consequently given by

ẍF
ij (T) =

1τ ′

1τ
âF

ij (T)+
1τ −1τ ′

1τ
âF

ij (T +1τ ′). (40)

From the above, it is evident that effective frictional accelerations for static, stopping,
and bouncing particle-pairs depend on the frictional accelerations of other pairs ((aex)ij ).
Hence, the effective frictional accelerations must be computed simultaneously. The effective
frictional accelerations of static and stopping particle-pairs are defined as the accelerations
required for the tangential velocity atτ +1τ to reach zero. This definition of static pairs
allows them to be treated identically to stopping particle-pairs and avoids the possibility
that the tangential velocities will drift from zero due to numerical roundoff error accu-
mulation. Therefore, if bouncing particles could be ignored, frictional forces for static,
stopping, dynamic, and starting particle-pairs would be computed simultaneously by ap-
plying the dynamic frictional acceleration(ad

ij ) for starting and dynamic particle-pairs and
then computing the frictional accelerations for static and starting particle-pairs such that

ẋT
ij (τ +1τ) = 0. (41)

In order to treat bouncing particle-pairs simultaneously with the other particle-pairs, we
defineτ +1τ ′ as the instant when the tangential velocity reaches zero. The effective fric-
tional force for bouncing particle-pairs is computed from1τ ′, the dynamic acceleration,
and the initial velocity (Fig. 5). Therefore, the frictional acceleration for bouncing particle-
pairs is defined as the acceleration required for the tangential velocity atτ +1τ ′ to reach
zero. For static and stopping particles we set1τ ′ =1τ . Hence, the frictional forces of all
particle-pairs are computed simultaneously by defining the effective frictional acceleration
as the acceleration required for the tangential velocity atτ +1τ ′ to reach zero, namely

ẋT
ij (τ +1τ ′) = 0. (42)

In order to solve Eq. (42), the value of1τ ′ for bouncing particle-pairs must be obtained.
This value is computed such that the modified velocity–Verlat scheme using a half time
step integration (Eq. (25)) is verified. The particle velocity, given by

ẋi (τ +1τ) = ẋi (τ )+1τ
[
(aex)ij (T)+ ẍF

ij (T)
]
, (43)

equals the velocity that would have been computed at the next half time step using the
“exact” equations in which the frictional forces fromτ to τ +1τ ′ (denotedâF

ij (T)) and
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from τ +1τ ′ to τ +1τ (denotedâF
ij (T +1τ ′)) are equal in magnitude and opposite in

sign:

ẋi (τ +1τ ′) = ẋi (τ )+1τ ′
[
(aex)ij (T)+ âF

ij (T)
]
, (44)

ẋi (τ +1τ) = ẋi (τ +1τ ′)+ (1τ −1τ ′)
[
(aex)ij (T +1τ ′)+ âF

ij (T +1τ ′)
]
, (45)

where(aex)ij is defined by Eq. (28) and is given by

(aex)ij (T) = (aex)ij (T +1τ ′). (46)

The exact or theoretical frictional forcêaF
ij is given by

âF
ij (T) = −âF

ij (T +1τ ′) = −
ẋT

ij (τ )∣∣ẋT
ij (τ )

∣∣ad
ij (T)e

T
ij . (47)

From the previous equations, the value of1τ ′ relates töxF
ij andâF

ij through

1τ ′ = 1τ ′ij =
1τ

2

(
ẍF

ij (T) · eT
ij

âF
ij (T) · eT

ij

+ 1

)
. (48)

NONLINEAR SYSTEM TO COMPUTE EFFECTIVE FRICTIONAL ACCELERATION

For a given particle-pair state, the effective frictional acceleration of the dynamic and
starting particle-pairs is equal to the dynamic accelerationad

ij (computed using Eq. (10)),
which opposes the tangential velocity. The effective frictional accelerations for the static,
stopping, and bouncing pairs must be computed by solving these accelerations such that
Eq. (42) is verified. Since the directions of the frictional accelerations are known for these
pairs, only the magnitudesas

ij must be computed. Using Eqs. (11), (13), and (20), one may
write Eq. (42) as a nonlinear system involving all stopping, static, and bouncing particle-
pairsij , namely

q(as) =


...

ẋT
ij (τ +1τ ′)

...

 =

...

0
...

 , (49)

where

as =


...

as
ij

...

 , (50)

and

ẋT
ij (τ +1τ ′) = ẋT

ij (τ )+1τ ′aT
ij (T), (51)

aT
ij (T) = a0

ij (T)+
∑
l∈Pi

ẍF
il (T) · eT

ij −
∑
l∈Pj

ẍF
jl (T) · eT

ij , (52)

a0
ij (T) =

(
ẍ0

i (T)− ẍ0
j (T)

) · eT
ij , (53)
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with the expression1τ ′ given by Eq. (48). This quadratic system can be solved using a
Newton algorithm by iteratively solving the equation

(as)n = (as)n−1− (∇qn−1)
−1qn−1, (54)

which can be written using the formAx+ b= 0 as

∇qn−1× (as)n + b = 0, (55)

where

b = qn−1−∇qn−1× (as)n−1, (56)

and(as)n denotes the frictional acceleration of all stopping, starting, and bouncing particle-
pairs at thenth iteration of the Newton algorithm, andqn is equal toq((as)n) (i.e., the value
of q at thenth iteration). The derivative ofqn−1 is given by

∇qn−1 =


...

· · · ∂qij

∂aF
lm

· · ·
...

 , (57)

where, from Eq. (51),

∂qij

∂as
lm

= ∂1τ ′

∂as
lm

aT
ij +1τ ′

∂aT
ij

∂as
lm

+ ∂ ẋT
ij

∂as
lm

,

= ∂1τ ′

∂as
lm

aT
ij +1τ ′

∂aT
ij

∂as
lm

, (58)

and by Eq. (52),

∂aT
ij

∂as
lm

=


eT

lm · eT
ij , l = i

−eT
lm · eT

ij , l = j

0, otherwise,

(59)

and

∂1τ ′

∂as
lm

=
{

0, state= static or stopping
1τ

2âF
ij (T) · eT

ij
, state= bouncing, (60)

from the expression of1τ ′ given by Eq. (48). The initial value ofas, denoted(as)0, is
set to the static frictional acceleration computed for the previous time step. In order to
compute∇qn−1 and proceed to the next iteration of the Newton algorithm (cf. Table II), the
values ofâF

ij ,1τ
′, andaT

ij must be updated. Therefore, the effective frictional acceleration
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TABLE II

Computation of the Effective Frictional Accelerations for a Given

Fixed State and Viscous Forces

Set particle-pair state to the last computed state
Set frictional accelerations to the last computed frictional accelerations

do
Apply the effective frictional forces (Eq. (11))
Update the tangential velocitiesẋT

ij (τ +1τ) (Eqs. (25) and (13))
Computer1τ ′ (Eq. (48))
Update the tangential velocitiesẋT

ij (τ +1τ ′) (Eqs. (44) and (13))
Compute the effective tangential accelerationsaT

ij (Eq. (62))

Compute∇qn−1 (Eq. (57))
Proceed to the next iteration of the Newton algorithm
Compute the frictional accelerations(as

ij ) by solving the linear system (55)

Compute the effective frictional accelerations (Eq. (61))
until converged

ẍF
ij is updated according to new estimations ofas

ij for all static, stopping, and bouncing
particle-pairs:

ẍF
ij =

{
as

ij · eT
ij , state= static, stopping, or bouncing

unchanged, state= dynamic or starting.
(61)

The values of̂aF
ij and1τ ′ are subsequently updated by respectively using Eqs. (47) and

(48). Finally, the tangential velocities atτ +1τ ′ (ẋT
ij (τ +1τ ′))must be recomputed using

Eqs. (44) and (13) in order to updateaT
ij using

aT
ij =

ẋT
ij (τ +1τ ′)− ẋT

ij (τ )

1τ ′
, (62)

which can be deduced from Eq. (51).
The iterative Newton algorithm is specified in Table II, where computation of the effective

friction forces is shown. The convergence criterion is based on the error of the slip velocity
for static and bouncing particle-pairs atτ +1τ , which should be zero. Namely, convergence
is achieved if

ẋT
ij (τ +1τ) < εs, (63)

whereεs is chosen according to the specific computer’s numerical precision (typically
εs= 10−18 in double precision).

Particle-pair states are set before the Newton algorithm shown in Table II is performed,
and they remain unchanged until the algorithm converges. Therefore the resulting effective
frictional acceleration may not be consistent with that of the particle-pair states. For instance,
the frictional acceleration required to stop slip between two particles may be so great that
the particle-pair state should be dynamic rather than static. Hence, the particle-pair states
must also be updated in accordance with the computed values ofas

ij .
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PARTICLE-PAIRS STATE ITERATIVE PROCEDURE

The states of particle-pairs are determined from the frictional accelerationsas
ij and the

tangential velocities. Particle-pair states are determined using

State=



static, ẋT
ij (τ ) = 0 & as

ij < acut

starting, ẋT
ij (τ ) = 0 & as

ij ≥ acut

stopping, ẋT
ij (τ ) 6= 0 & as

ij < acut

dynamic, ẋT
ij (τ )ẋ

T
ij (τ +1τ) ≥ 0 & as

ij ≥ acut

bouncing, ẋT
ij (τ )ẋ

T
ij (τ +1τ) < 0 & as

ij ≥ acut,

(64)

whereacut is such that the frictional acceleration never exceeds the dynamic frictional
acceleration (i.e.,̂aF

ij · eT
ij ≤ad

ij ). From Eq. (40) the value ofacut is given by

acut = (acut)ij =

(

21τ ′ij
1τ
− 1

)
ad

ij , last computed state= bouncing

ad
ij , otherwise.

(65)

Particle-pair tangential velocities atτ +1τ (ẋT
ij (τ +1τ)) are updated using Eq. (25).

The effective frictional acceleration̈xF
ij is computed using

ẍF
ij =


as

ij e
T
ij , state= static or stopping

ad
ij e

T
ij , state= starting or dynamic(

21t ′
1τ
− 1
)
ad

ij e
T
ij , state= bouncing.

(66)

The effective frictional accelerations are consequently modified after the particle-pair states
have been updated. Hence, frictional interactions have changed and the effective frictional
forces must be recomputed. This is achieved using an iterative procedure (Table III) which
recomputes the frictional forces and updates the particle states until there is no further change
in the particle-pair states, the effective frictional accelerations have converged within some
tolerance, and Eq. (63) is verified.

The initial particle-pair states and the frictional accelerations are respectively set to the
states and the frictional accelerations computed at the previous time step for particle-pairs

TABLE III

Computation of the Effective Frictional Acceleration

Set the particle-pair state to the state computed at the previous time step
Set the frictional acceleration to the values computed at the previous time step

do
Update of the effective frictional accelerations (Table II kernel)
Apply effective frictional force (Eq. (11))
Update tangential velocitieṡxT

ij (τ +1τ) (Eqs. (25) and (13))
Update particle-pair states (Eq. (64))
Update effective frictional accelerations (Eq. (66))

until converged
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TABLE IV

Computation of Forces due to Friction and Viscosity

on Unbonded Touching Particles

do for all particles n in frictional interaction
Fνn(t) = −νẋn(t)
ẍ0

n(t
−) = 1

M

(
FI

n(t
−)+ Fνn(t)

)
Update effective frictional accelerations (Table III kernel)
ẍn(t−) = ẍ0

n(t
−)+∑l∈Pn

ẍF
nl(t
−)

ẋn(t) = ẋn

(
t − 1t

2

)+ 1t
2

ẍn(t−)
until converged

remaining in contact. For particles coming into contact, the state is set to “dynamic” and
the frictional acceleration is set toad

ij (N.B. The choice of the initial state affects only the
rate of convergence of the algorithm.) Non-convergence can occur when the matrix∇q
becomes numerically irregular. In that case, frictional forces may be incorrect. When non-
convergence occurs, the frictional forces are corrected such that their direction is opposite
the direction of slip and they do not exceed the dynamic frictional force. Non-convergence
occurs only under a specific arrangement of particles, where, in the worst case, we have
observed that one non-convergence occurs every 100,000 time steps and affects less than
0.1% of the particles in frictional contact.

VISCOSITY

For the half time step fromτ = t − 1t
2 to t (i.e., T = t−), the viscous forces depend on

the velocity at the end of the half time step. Hence, the viscous forces must be recomputed
using the new values of particle velocities at timeτ +1τ . Since the accelerations(aex)ij

are modified if the viscous forces change, the effective frictional accelerations must also
be updated. This is achieved using an iterative algorithm (Table IV) in which forces due to
the viscosity are added after the frictional forces are applied, and the nonlinear system is
subsequently recomputed.

The algorithm shown in Table IV simultaneously iterates the effective friction, particle-
pair state, and viscous force, allowing the Newton algorithm for effective friction to converge
at the same time that particle-pair state and viscosity are updated.

GLOBAL NUMERICAL INTEGRATION

Table V specifies the global algorithm using the half time step integration scheme. The
elastic interactions(FI

n(t
−)) are first computed using Eq. (6). Once particle accelerations

and velocities are updated, viscous forces are incorporated (Table I). The first half time step
(from t − 1t

2 to t−) ends with the computation of the effective frictional forces (specified by
Table IV), where the viscous forces are updated for the particles in frictional interaction. At
the second half time step, links are broken for bonded particle-pairs which have a separation
r ij greater thanrbreak (links are forced to break att with FI

n(t
−) denoting the elastic force

computed before the bond is broken andFI
n(t
+), the elastic force after the bond is broken).

Frictional accelerations are recomputed and, finally, particle velocities and positions are
updated using the modified velocity–Verlat scheme.
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TABLE V

Computation of the Two Half Time Steps

First half time step (computėxn(t) andẍn(t−) givenxn(t) andẋn(t − 1t
2

))

Update accelerations and velocities:

ẍI
n(t
−) = 1

M
FI

n(t
−)

ẋn(t) = ẋn

(
t − 1t

2

)+ 1t
2

ẍI
n(t
−)

Incorporate viscous forces for bonded particles (Table I)
Incorporate frictional and viscous forces for unbonded particles (Table IV)

Second half time step (computeẋn(t + 1t
2
), ẍn(t+), andxn(t +1t) givenxn(t) andẋn(t))

Break bonds (computëxI
n(t
+) andẍI

n(t
−))

Incorporate frictional forces:

ẍ0
n(t
+) = 1

M

(
FI

n(t
+)+ Fνn(t)

)
Incorporate frictional forces for unbonded particles (Table III)
ẍn(t+) = ẍ0

n(t
+)+∑l∈Pn

ẍF
nl(t
+)

Update particle velocities and positions:

xn(t +1t) = xn(t)+1t ẋn(t)+ 1t2

2
ẍn(t+)

ẋn

(
t + 1t

2

) = ẋn(t)+ 1t
2

ẍn(t+)

The precision factor for the numerical integration is given by

ε = Vmax1t

r0
, (67)

whereVmax is the maximum velocity in the system, which is approximately equal to 1 (the
P-wave speed) ifr0= 1, k= 1, andM = 1 (Mora and Place [16]). In this caseε≈1t . The
choice ofε can be used to control the precision of the numerical results. Typically,ε <0.2
must be chosen to obtain results with adequate precision.

ENERGY CONSERVATION

The total energy of the system is computed as the sum of the kinetic energy, potential
energy, fracture energy, heat, and applied work done. The conservation of energy provides
a check of the numerical integration approach and implementation and is indicative only if
the total energy is not constant, in which case an error or imprecision must exist. As was
the case for the numerical integration scheme summarised in Table V, the computation of
energy by a half time step integration scheme improves the numerical precision.

The kinetic energy, potential energy, and fracture energy (which is the energy lost when
a bond is broken) are respectively given by

Eke(t) =
∑
n∈A

1

2
M |ẋn(t)|2, (68)

Ep(t) =
∑
i j ∈I

1

4
k(r ij (t)− r0)

2, (69)

and

E f

(
t + 1t

2

)
= E f

(
t − 1t

2

)
+
∑
i j ∈B

1

4
k(r ij (t)− r0)

2. (70)
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The factor is1
4 above rather than12 because the sum is over two interactions: particlei on

particle j and particlej on particlei . The kinetic energy lost due to the artificial viscosity
(Eν), computed from

Eν(t) = −
∫ t

0

∑
n∈A

Fν
n ẋn dt, (71)

is given by

Eν(t) = Eν

(
t − 1t

2

)
+
∑
n∈A

1t

2
ν|ẋn(t)|

∣∣∣∣ẋn(t)− 1t

4
ẍn(t

−)
∣∣∣∣, (72)

Eν

(
t + 1t

2

)
= Eν(t)+

∑
n∈A

1t

2
ν|ẋn(t)|

∣∣∣∣ẋn(t)+ 1t

4
ẍn(t

+)
∣∣∣∣. (73)

The total kinetic energy generated is computed as the sum of the kinetic energy(Eke) and
the kinetic energy lost due to the artificial viscosity(Eν) and is given by

EK = Eke+ Eν . (74)

Note that in the above equations,A denotes the set of all particles,I the set of all
interacting particle-pairs, andB the set of particle-pairs that have had their bonds broken
in the last time step. The work done by the applied intrinsic frictional force (i.e., effective
heat) is given by

Eh(t) =
∫ t

0

∑
ij∈F

MaF
ij ẋT

ij dt, (75)

and is computed using

Eh

(
t + 1t

2

)
= Eh

(
t − 1t

2

)
+ M

2

∑
ij∈F

aF
ij (t
−)s−ij (t)+

M

2

∑
ij∈F

aF
ij (t
+)s+ij (t), (76)

where

s−ij (t) = 1t

(
ẋT

ij (t)−
1t

4
ẍT

ij (t
−)
)
,

(77)

s+ij (t) = 1t

(
ẋT

ij (t)+
1t

4
ẍT

ij (t
+)
)
,

andF denotes the set of interacting particle-pairs. Assuming that heat generated by acous-
tic vibrations is negligible compared to heat generated by the work done against friction
between particles,Eh represents the effective heat generated by the rubbing of particles
against each other.

The external work done must also be computed and represents the energy added to the
system. For instance, for the numerical experiment described in Fig 6, energy is added to
the system in order to move rigid driving plates at a constant rate and to maintain a constant
normal stress on the edges. In this case, the external work done is given by

Wext= WH
ext+W+ext+W−ext, (78)
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FIG. 6. Illustration of a two-dimensional frictional experiment where the two blocks are composed ofnx × nz

particles. A normal stressσn is maintained in the solid and a shear stressτ f is applied on the driving plate such
that the driving velocity of the edges remains constant.

whereWH
ext is the component of external work done to maintain a constant horizontal velocity

of the driving plates, andW+ext andW−ext are respectively the work on the upper and lower
plates required to maintain a constant normal stress. The workWH

ext done to maintain the
constant driving velocities on the plates is

WH
ext

(
t + 1t

2

)
= WH

ext

(
t − 1t

2

)
+1t

∑
i∈Edges

(Fi · ex)(ẋi (t) · ex), (79)

whereex andez denote the unit vectors in thex andz directions. The external work done
on the upper or lower edge to maintain a given constant normal stressσn is given by

W+ext

(
t + 1t

2

)
= W+ext

(
t − 1t

2

)
+ 1t

2

∑
i∈Upper edge

(
1Fn1 + Fi · ez

)[(
ẋi (t)− 1t

4
ẍi (t

−)
)
· ez

]

+ 1t

2

∑
i∈Upper edge

(
1Fn1 + Fi · ez

)[(
ẋi (t)+ 1t

4
ẍi (t

+)
)
· ez

]
,

(80)

W−ext

(
t + 1t

2

)
= W−ext

(
t − 1t

2

)
+ 1t

2

∑
i∈Lower edge

(−1Fn2 + Fi · ez
)[(

ẋi (t)− 1t

4
ẍi (t

−)
)
· ez

]
+ 1t

2

∑
i∈Lower edge

(−1Fn2 + Fi · ez
)[(

ẋi (t)+ 1t

4
ẍi (t

+)
)
· ez

]
,

where

1Fn1 = 1Fn2 = Fn − 1

2

(
F̄z1 − F̄z2

) · ez, (81)
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or

1Fni = Fn − F̄zi · ez, (82)

for the upper and lower edges (i = 1 andi = 2, respectively). In the above equationsFn

denotes the normal force corresponding to a normal stressσn. Equations (81) and (82)
decribe different ways to maintain a contant pressure. In Eq. (81) the same normal force is
applied on the lower and upper edges whereas in Eq. (82) the two edges are independent,
which is more appropriate for simulating normal stress in the brittle crust.

In Eq. (80),1Fni +Fi · ez represents the normal force applied to the upper or lower edge
(i = 1 or i = 2, respectively),nx is the number of particles along the edge, andF̄zi is the
average value of the force on one particle for a row of particles atz= zi (z1 for the upper
edge andz2 for the lower edge, as shown in Fig. 6),

F̄zi =
1

nx

nx∑
j=1

F( j,zi ), (83)

whereF( j,zi ) is the total force acting on the particle located at rowzi and columnj .
Fn in model units is assumed to produce the same strain in the elastic model as a normal

stress ofσn in pascal units in a medium having typical values of elastic constants for the
crust (i.e., corresponding to a compressional wave speedVp= 3

√
3 km/s and a density of

the mediumρ= 3000 kg/m3).

UNIT CONVERSION

Scaling between systems of units is required in order to compare results obtained with the
model in arbitrary model units with real data or laboratory observations. In the following we
consider two unit systems: MKS units denoted by prime (′) and the model units (no prime).
The normal force arising from a relative normal displacement ofu is Fn= ku, wherek is
the spring constant (or the stiffness between two particles). Hence,

F ′n
Fn
= k′u′

ku
. (84)

Since strains (εn) are proportional to displacements divided by distancer0, we have

F ′n
Fn
= k′εn′r ′0

kεnr0
. (85)

The strains in the model equal the strains in the real system, soεn= εn′ , which leads to

Fn = F ′nkr0

k′r ′0
. (86)

In the 2D lattice solid, the stress in the MKS units system (σz′z′ ) is given by

σz′z′ = F ′n
r ′0
, (87)
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wherer ′0 is the particle diameter. Using Eqs. (86) and (87) we obtain

Fn = σz′z′
k

k′
r0. (88)

If we setk= 1 in model units, and assuming that we wish to use MKS units to specify the
normal stressσn andk′ (i.e., Fn in Pascals) are in MKS units, Eq. (88) becomes

Fn = σn

k′
r0, (89)

wherek′ can be deduced from

λ = µ = k′
√

3

4
, (90)

which is given in Mora and Place [16]. Namely, if we make use ofVp=
√

λ+2µ
ρ

, Eq. (90)

yields

k′ = λ+ 2µ

3

4√
3
= ρV2

p

4

3
√

3
= 4
√

3

9
ρV2

p . (91)

Consequently, to maintain a normal stressσn in Pascals, the normal forceFn in model units
that must be applied is

Fn = 9

4
√

3

σn

ρV2
p

r0. (92)

TOTAL ENERGY AND HEAT ERROR TERM

The normalised total energy, given by

E(t) = EK (t)+ Ep(t)+ E f (t)+ Eh(t)+Wext(t)

EK (t0)+ Ep(t0)+ E f (t0)+ Eh(t0)+Wext(t0)
, (93)

is computed. This value should remain close to unity if the scheme is accurate. The con-
servation of energy is not indicative of the validity of the results, but failure to conserve
energy would indicate a problem in the numerical approach. For example, as the time step is
increased, the numerical energy varies substantially with time due to increasing inaccuracy
of the finite difference scheme in representing the time derivative. Similarly, failure to model
friction precisely during the numerical integration procedure results in time variation in the
computed numerical energy.

The computation of heat using Eq. (76) allows “negative heat” to be generated if the
tangential velocityẋT

ij changes sign during a half time step (i.e., bouncing pairs). If the
simple iterative approach described previously is used, a negative value for heat means that
the frictional forces are not correct. In the Cundall approach to computing friction, the work
done by intrinsic friction also includes energy absorbed or restored in the shear deformation
of the particles. Hence, “negative heat” is not indicative of a fundamental error within the
method (i.e., it is self-consistent). However, negative heat generation can indicate an error
in dynamics relative to the desired result: when two particles are locked by static friction,
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part of the energy is stored as shear deformation of the particle. If the frictional forces are
underestimated or overestimated, the particle will restore or release some of the energy
stored in shear deformation. This results in tangential oscillation of the particle around the
point of contact. An excessive “negative” heat generation (typically, the energy released
from the particle shear deformation is one order of magnitude less than the total work
done by intrinsic friction using a shear stiffness,ks= k) would indicate that particles are
unphysically oscillating due to incorrect frictional forces. These oscillations can also cause
non-physical changes in frictional behaviour (i.e., changing between static and dynamic
frictional behaviour).

However, a positive value for heat may or may not be correct. For example, if the tangential
velocity changes in sign (i.e., bouncing particle), a positive value of heat may be incorrect
(the frictional force may oppose the direction of slip at the end of the time step but will not
oppose the direction of slip during the entire time step since the slip is reversing during the
time step).

By summing the “negative heat” generated (E−h ), a lower bond of the component of the
energy restored to the system by applying a frictional force which is too large or too small
can be evaluated:

εh =
∣∣∣∣ E−h
Eh − E−h

∣∣∣∣. (94)

In the lattice solid model, the work done by intrinsic friction (i.e., effective heat) for
bouncing particle-pairs can have a negative value while the correct dynamics is simulated. In
order to compute the “true” or effective heat generated during a simulation, the effective heat
for bouncing particles is computed using Eq. (76), where the effective frictional forcesaF

ij are
set to the true value of the frictional acceleration (i.e.,aF

ij is respectively equal tôaF
ij (T) and

âF
ij (T +1τ ′) before and after the tangential velocity passes through zero). Consequently,

for the lattice solid approach, the negative heat measured by Eq. (94) is an overestimate of
the error. With the lattice solid approach, the negative heat generated by friction between all
particles, except bouncing particle-pairs, is typically 5 orders of magnitude less thanE−h .
HenceE−h for the lattice solid approach represents mainly the “negative” heat generated by
bouncing particle pairs. Since bouncing particle-pairs can produce “negative” heat while
simulating the desired dynamics,εh potentially overestimates the error in the lattice solid
approach by up to several orders of magnitude.

LIMITATIONS AND FUTURE WORK

Particles in the model represent idealized grains or units of rock. This representation
has limitations, in that particles do not rotate and do not have moments of inertia. Further-
more frictional forces are applied at the particle centres and not at the particle surfaces.
To overcome these limitations, particles can be used as the building blocks of grains or,
alternatively, rotation at the particle scale can be included and friction applied at particle
surfaces as in Winteret al. [25]. By grouping particles to form unbreakable model grains of
rock, rotation can be simulated and frictional forces applied at the grain surface in the limit
of large multi-particle grains. While single particles effectively have infinite shear stiffness,
grains can be deformed when subjected to shear stress. Because grains in the model are
the smallest indivisible unit of the system, unlike those in real rocks, they cannot break to
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FIG. 7. Concept of modeling the interactions between particles and bonds. The space between bonded particles
is filled by material and interacts accordingly with other particles.

form smaller grains of rock. In the following examples, grains are composed of only 3 to 10
particles due to computer limitations. Consequently grains have a high surface roughness.
To specify a realistic surface roughness, a possible solution would be to fill the spaces
between bonded particles with material and to allow interactions between fill material and
particles to be modelled (Fig. 7). The use of particles of different sizes would also allow
more realistic surface roughness to be specified, and would reduce the porosity to a more
realistic value (cf. a rock with non-uni-modal grain size). This solution would also enable
random lattices to be specified, and hence, isotropic fracture behavior could be modelled.
By using particles of different sizes and filling the space between bonded particles, grain
shapes and fault surface roughness could be more precisely controlled, thus enabling more
realistic geometries to be modelled.

The heat generated during a simulation is defined as the work done by intrinsic friction
between particles. Because attenuation of acoustic vibrations is not modelled, the calculation
of heat does not take into account heat that would in reality eventually be generated by
acoustic vibrations.

RESULTS

The purpose of the first set of numerical experiments is to show that results obtained
with the model are consistent with our theoretical expectation and with field observations.
These tests consist of (1) verifying that the heat generated during earthquakes (defined as the
work done against microscopic intrinsic friction) is in accordance with a simple theoretical
prediction (work done at the macroscopic scale); (2) verifying that the stick–slip frictional
behaviour is observed and is similar to other observations.

The purpose of the following numerical experiments is to check the numerical precision
and the validity of the results when an intrinsic friction is specified by verifying that the
heat produced during microscopic slips between particles is the same as a value that would
be theoretically expected from macroscopic slip between the fault surfaces, assuming that a
coefficient of friction is equal to the particle intrinsic friction. The normalised total energy
given by Eq. (93) is plotted to verify the precision of the numerical approach.

The numerical experiment (Fig. 8) consists of two homogeneous elastic blocks where the
surfaces are essentially flat to within the resolution of the model (i.e., surface height variation
hs= (1−

√
3

2 )r0). Circular conditions are applied along thex axis. The blocks, composed
of 64× 32 particles, are pushed past one another by moving the rigid driving plates at a
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FIG. 8. Two-dimensional experiment involving two elastic blocks composed of 64× 32 particles, where a
constant normal stress of 300 MPa is maintained on the rigid driving plates and a frictional coefficient ofµ= 0.8
is used. The block surfaces are flat to within the limits of the discretisation (i.e., the roughness is not zero because
the smoothest surface that can be defined using the lattice solid model is a row of particles).

constant rate of∼0.00024Vp (whereVp=
√

9
8 usingk= 1 andM = 1), while maintaining

a given normal stressσn on the rigid driving plates. A “normal stress” of 300 MPa was used
in this numerical experiment, which approximately corresponds to the upper limit of the
normal stress at middepth in the brittle crust. The viscosity of the medium is set toν= 0.064.
The normal stress is computed using a compressional wave speed ofVp= 3

√
3 km/s and a

densityρ= 3000 kg/m3 (cf. Eq. (89)). The breaking separation (rbreak) is set to 1.1r0, which
can be considered the upper limit for most materials (Mora and Place [16]). Figure 9 shows
the observed macroscopic coefficient of friction of the model fault defined as the ratio of
shear to normal stress given by

µ f (t) = τ f (t)

σn(t)
=
(
F̄z1(t)− F̄z2(t)

) · ex(
F̄z1(t)− F̄z2(t)

) · ez
, (95)

whereτ f is the shear stress measured on the driving plates, andσn is the normal stress.
F̄zi is the average value of the force for a row of particles atz= zi (z1 for the upper edge
andz2 for the lower edge of the lattice). Assuming that energy goes mainly into seismic

FIG. 9. Plot of the observed coefficient of friction measured on the rigid driving plates showing stick–slip
cycles.
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FIG. 10. Heat generated using the lattice solid model approach in an example in which the numerical error
in heat remains less than 0.01% and the heat generated is equal to the theoretical value. The staircase appearance
of the actual heat is due to the stick–slip movement of the fault.

waves and heat (this is a true assumption, considering the fact that during the experiment
no fracturing occurred and there are no transformations of energy other than kinetic and
heat), the frictional stress on the fault,τ f , can be expressed as the sum of the frictional
stress going into seismic waves (due to surface roughness) and heat (due to intrinsic friction
between particles). Hence, the observed coefficient of friction represents the sum of the
surface roughness effect and intrinsic friction between particles. Stick–slip cycles can be
seen as the characteristic sawtooth shape observed in laboratory experiments.

Figure 10 shows the “actual heat” (i.e., heat generated when particles rub past one another)
and the “theoretical heat” given by

Eth

(
t + 1t

2

)
= Eth

(
t − 1t

2

)
+ 2V1t

µ

r0

[(
F̄z1(t)− F̄z2(t)

) · ez
]
, (96)

whereV is the driving plate velocity. The theoretical heat represents the heat that would be
generated by rubbing two blocks of rock past one another at a constant velocityV , where
the coefficient of friction of the rock isµ (Eth=µσn2LVt, whereL is the length of the
driving plates). In this numerical experiment, the heat generated follows the same trend
as that of the theoretical value, and the error in heat (given by Eq. (94)) remains less than
0.01%.

The purpose of the next two sets of numerical experiments is to verify that the friction
of the model fault is equal to the theoretical value for different sets of parameters.

In the first set of numerical experiments, the normal stress was constant (300 MPa) and
the frictional coefficientµwas varied from 0.1 to 0.9. The effective macroscopic coefficient
of friction (producing heat) is given by

µ̄h = µ
Ē′h
Ē′th

, (97)

whereĒ′h andĒ′th are respectively the average rate of heat actually generated (computed as
the work done against intrinsic friction) and heat theoretically generated (given by Eq. (96)).
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FIG. 11. Observed macroscopic coefficient of friction and effective macroscopic coefficient of friction com-
pared to the theoretical valueµ (dashed line). The minimum observed macroscopic coefficient of friction is not
zero because the fault roughness is not zero.

The ratio between these two values should be close to unity if the heat generated remains
close to the theoretical value. In this case, the effective macroscopic coefficient of friction
should be equal to the microscopic coefficient of frictionµ. Figure 11 shows the observed
macroscopic coefficient of friction ( ¯µ f ) computed as the average value ofµ f (Eq. (95)) and
the effective macroscopic coefficient of friction, ¯µh as a function ofµ. In these numerical
experiments, the effective coefficient of friction remains approximately equal to the micro-
scopic coefficient of frictionµ, the total energy is constant to within an error of 0.1%, and
the error in heat is less than 0.01%.

In the second set of numerical experiments a frictional coefficientµ equal to 0.8 and a
normal stressσn ranging from 25 to 400 MPa are used. Figure 12 shows the observed macro-
scopic coefficient of friction ( ¯µ f ) and the effective macroscopic coefficient of friction ( ¯µh),
which would theoretically be expected to equal the microscopic coefficient of frictionµ.

For pressure greater than∼250 MPa, the effective macroscopic coefficient of friction ¯µh

in Figs. 11 and 12 follows the expected value. However, in Fig. 12 the observed coefficient

FIG. 12. Observed macroscopic coefficient of friction and effective macroscopic coefficient of friction com-
pared to the theoretical valueµ (dashed line) as a function of the normal stress.
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FIG. 13. Example of a setup for a numerical friction experiment. The two blocks are pushed by moving the
driving plates at a constant rate. The lattice is made of grains composed of 3 to 10 particles.

of friction tends to be higher than the theoretical prediction, especially at low values of the
normal stress. This is essentially due to a dynamical effect enhanced by the low normal
pressure and the regularity of the surface roughness where the slip can eventually reverse
(overshoot effect leading to slip that is more than a simple sliding movement of surfaces,
and thus, to more heat generated).

NUMERICAL EXPERIMENT

The two-dimensional numerical friction experiment (Fig. 13) consists of two homoge-
nous elastic blocks separated by a gouge layer. The lattice is composed of 128× 128 parti-
cles. Two regions can be distinguished: the gouge region and the elastic region (outside the
gouge region). The elastic region is unbreakable and hence represents a pure elastic material.
The gouge region is composed of grains which are not bonded mutually. Grains themselves
are composed of 3 to 10 particles which are bonded by strong links (i.e.,rbreak= 1.5r0). The
distribution of grain sizes in the gouge region is inversly proportional to the grain sizes.
Normal stress is maintained at 150 MPa on the driving plates while the plates are pushed at a
constant velocity of∼0.00024Vp, whereVp represents the P-wave velocity (Vp=

√
9
8 ∼ 1.0

for a spring constantk= 1 and a particle massM = 1; see also Mora and Place [16]).

STICK–SLIP INSTABILITY

The observed coefficient of friction during the friction experiment, computed using
Eq. (95), shows the characteristic sawtooth shapes of stick–slip frictional behaviour (Fig. 14)
and a complex distribution of event sizes. The numerical experiment involves a system of
128× 128 particles. The lattice is made of grains composed of 3 to 10 particles, where the
grain distribution is homogeneous. The coefficient of frictionµ= 0.42, rbreak= 1.5r0 inside
a grain, andrbreak= 1.04r0 between grains, and a constant normal pressureσn= 150 MPa
is maintaned at the driving plates.

FAULT GOUGE AND HEAT OF EARTHQUAKES

A long-standing paradox in earthquake studies has been the heat flow paradox
(Lachenbruch and McGarr [9], Lachenburg and Sass [10]), namely, that the heat flow
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FIG. 14. Observed coefficient of friction during a frictional experiment showing stick–slip cycles.

observed along the San Andreas fault is at least five times less than the theoretically pre-
dicted value. With different values of the intrinsic friction from 0.1 to 3.2 and a setup similar
to that specified previously, simulations show that the actual heat due to rubbing between
particles (Eq. (76)) is up to 10 times less than the theoretical value (Fig. 15). (See also Mora
and Place [18, 19] for a comprehensive presentation of these and related results which
provide a possible explanation of the heat flow paradox and associated observations.)

During the simulation, slip pulses are sometimes observed that propagate along the fault
in a manner similar to that observed by Brune and co-workers [3] in stick–slip experiments
on foam rubber. However, analysis of the results (Mora and Place [18, 19]) show that
a reduction in normal stress between grain surfaces during slip cannot explain the low
heat observed. This suggests that neither the Brune-type local reduction in normal stress
(coherent with a slip pulse) nor the Melosh-type incoherent reduction in normal stress
(“acoustic-fluidisation” model; Melosh [13]), if present, is the dominant cause of heat
reduction in the numerical experiments. Rather, the analysis of Mora and Place [18, 19]
showed that the low value of heat is explained by rotation of grains ( jostling and rolling)
with minimal slip of grain surfaces during slip of the fault, a mechanism which is promoted
by the high value of the intrinsic friction (or rounder grains).

This “clean rotation” reduces the amount of slip between surface particles of grains and
consequently reduces the heat generated during a macroscopic slip event of the model fault.
Numerical experiments show that when grains are allowed to break down to one particle

FIG. 15. Actual heat compared to theoretical predictions when (left) a high value of intrinsic friction is used
(i.e.,µ= 1.7), and when (right) a low value of intrinsic friction is used (i.e.,µ= 0.42).
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FIG. 16. Snapshots of simulations in which fault gouge was generated.

only (irrotational units that only allow slip), a fault develops that is mainly composed of free
particles (Fig. 16). The lattice is composed of 128× 128 particles which are the smallest
indivisible units of the system. The value ofrbreak is uniformly equal to 1.05r0 andµ= 0.85.
When a slip event occurs, free particles slip against one another (free particles are unable to
rotate since rotation is not modelled in the current version of the lattice solid model). Hence,
more heat is generated when grains do not rotate than when rotation of grains is allowed,
but still less than the theoretical value in some instances (up to 50% less). This is due
to a physical bouncing mechanism (similar mechanisms are known to reduce friction and
have been studied previously in Pisarenko and Mora [20]) that allows particles to slip past
one another while the normal stress is temporally reduced. This result suggests that while
rolling is the dominant low heat mechanism in the numerical experiment, bouncing-type
mechanisms may superimpose on this effect in a simulation using grouping of particles.
This is verified by detailed calculation in Place and Mora [24].

COMPUTATIONAL NEEDS

The system size for simulations was 128× 128 or 256× 256 particles and is too small to
specify realistic fault systems or rock surface roughness. Computations involving intrinsic
friction are highly time consuming when fault gouge develops because the nonlinear system
which must be solved to compute the static frictional acceleration is proportional to the
number of touching particles (Eq. (49)). Therefore, efficient algorithms are required to
reduce the computational time.

A typical simulation involving two blocks of 128× 64 particles requires approximately
250,000 units of time (withk= 1 andM = 1). In other words, if the time step increment
1t is 0.04 (for a precise numerical solution with intrinsic friction), the simulation will
require 50 million time steps (approximately two months of computation on a 1.2 GFlops
computer).

In order to reduce the number of time steps required for a simulation, the time step
increment1t must be as large as possible for the required precision to be obtained. The
precision factor (given by Eq. (67)) relates to the maximum velocity and the time step
increment where a large time step increment can be used when particle velocities are
small (a time step increment of 0.2 is required to obtain results with adequate precision,
assuming that the maximum velocity is approximately equal to 1, the P-wave speed, if
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r0= 1, k= 1, andM = 1). A time step increment of 0.4 may be sufficient for a stable and
accurate numerical integration in much of the run such as during static stress buildup phases.
However, a time step increment of 0.04 is typically required to capture discontinuities due
to frictional interactions, precisely compute the frictional forces, and yield an accurate
numerical integration when the system is undergoing a dramatic dynamical event (such as a
simulated earthquake). An adaptive time step increment has therefore been developed that
enables a large time step increment to be used during periods of quiescence of the simulation
(i.e., stick phase). The time step increment is chosen as a function of the maximum particle
velocity using

1t (t) =
{

max(1tγ (t),1tmin), |ẋ|max(t) > K

1tmax, |ẋ|max(t) ≤ K ,
(98)

where

1tγ (t) = 1t0
(1− γ )K ′
|ẋ|max(t)

+ γ1tγ (t −1t), (99)

γ =
{
γ1, if |ẋ|max(t) ≥ |ẋ|max(t −1t)

γ2, otherwise.
(100)

The maximum particle velocity is denoted by|ẋ|max and1t0 represents the normal time
step increment (1t0= 0.2) that is suitable for wave propagation and “non-violent” dynamic
events. The maximum time step increment1tmax (typically,1tmax= 0.5) is the largest time
step that is suitable for numerical stability and that can be used where no dynamic event
is occurring. The minimum time step increment1tmin is the largest time step that can be
used when a “violent” dynamic event occurs (typically1tmin= 0.04). The constantK is an
average of particle velocity and represents the minimum particle velocity when no dynamic
events are occurring. The constantK ′ is used to scale the time step increment andγ is used
to control the rate of change of the time step increment.K ′ andγ are chosen such that a
large time step increment will be used when no simulated earthquake events are occurring
(i.e., stick phase), and will quickly decrease when a simulated earthquake is initiated in
order to capture changes in frictional behaviour. To capture events triggered by other events
the time step should also increase slowly once all radiated energy (seismic waves) from an
earthquake has been dissipated.

For example, for small particle velocity (i.e.,|ẋ|max(t)< K ′) the time step will approach
1t0. The value ofK ′ is typically chosen as the typical particle velocity when waves propagate
in the solid but no “violent” dynamic event is occurring. A small value ofγ1 is chosen to
allow the time step increment to rapidly adapt when the particle velocities are increasing
during initiation of a slip phase, for instance (typically,γ1= 0.1 to rapidly capture stick–slip
instabilities). A large value ofγ2 will ensure a gradual increase of the time step increment
when the particle velocities are decreasing (typically,γ2= 0.9 to capture aftershocks or
main shocks occurring after precursory events). The time step increment is recomputed
after each half time step (specified in Table V) at the middle and at the end of a time step.
If at the end of a time step, the calculated time step increment decreases, that is, a value
that was too large was used during the last half time step, then the time step is halved and
recomputed using the newly computed time step.

Typically, a variable time step leads to a reduction of approximately 300% in the number
of time steps compared to a simulation using a constant time step increment of 0.04.
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The solution of the linear system (Eq. (55)) to compute frictional forces is also optimized.
The linear system involves a square matrix∇q of all interacting particle-pairs. A simulation
involving 128× 128 particles may typically have up to 2000 interacting particle-pairs, so
the size of the matrix∇q will be 2000× 2000. Since all elements of the matrix∇q are zero
except for particle-pairs which interact with one another, only the non-zero elements are
stored in memory. This sparse system is solved using an LDU decomposition.

A reduction in computational needs is critical for large scale simulations, where the
model size is limited by the computational time required to compute the frictional forces.
Unfortunately, model sizes used (128× 128 and 256× 256) were insufficient to specify
realistic rock surface roughness (e.g., as observed and described by Brown and Scholz [4])
or fault systems. Up to 40% of the time (when a large fault gouge develops) is spent solving
the linear system to compute the frictional acceleration (even using a highly optimized
sparse LU solver). Hence the efficiency of the program as a whole depends mostly on the
efficiency of the algorithm in solving a “sparse” linear system (see also Place and Mora [23]).

CONCLUSIONS AND PERSPECTIVES

Incorporation of intrinsic friction into the lattice solid model enables more realistic and
accurate simulations of the physics of rocks and the dynamics of earthquakes to be performed
using the lattice solid model.

This is achieved by specifying interactions between model particles in a such way that
no slip is observed between particles when two surfaces are locked by static friction. The
numerical approach is based on a half time step interaction scheme in which the discontinuity
due to bond breaking is precisely captured. Transition between static and dynamic frictional
behaviour is modelled by introducing intermediate states for particle-pairs undergoing this
transition or bouncing against one another. Static frictional forces are computed by resolving
a nonlinear system involving all frictional interactions that effectively lock grains at the
contact point (stop slip between surface particles of grains).

The lattice solid model provides a precise, reliable, and efficient approach which can be
used to quantitatively study heat generation and problems of geophysical significance such
as the heat flow paradox. Such studies have already provided a comprehensive possible
explanation for this geophysical paradox. By simulating microscopic frictional instabilities
(the transition between static and dynamic behavior), the model is able to simulate complex
phenomena occurring in large nonlinear dynamical systems, such as precursory phenomena
which may occur before a large earthquake. Future studies of such phenomena may provide
clues to the predictability of earthquakes.

APPENDIX: COMPARISON OF DIFFERENT NUMERICAL APPROACHES

The numerical experiment (Fig. 17) consists of two homogeneous elastic blocks where
a constant normal stress of 1470 MPa (usingVp= 3

√
3 km/s andρ= 3000 kg/m3) is

maintained on the edges of the lattice and a frictional coefficientµ= 0.8 is used. The block
surfaces are flat to within the model discretisation.

Several simulations are performed using three different methods: the interative method
(the first simple approach proposed), the Cundall approach applied to the lattice solid model,
and the current lattice solid model approach. The joint stiffnessKs used for Cundall’s
approach is set to 1.0.
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FIG. 17. Two-dimensional experiment involving two elastic blocks composed of 64× 32 particles. The block
surfaces are flat to within the limits of the discretisation (i.e., the roughness is not zero because the smoothest
surface that can be defined using the present lattice solid model is a row of particles).

Figure 18 shows the observed coefficients of friction for the three methods using the
same set of parameters. The observed coefficient of frictionµ f is given by

µ f (t) = τ f (t)

σn(t)
=
(
F̄z1(t)− F̄z2(t)

) · ex(
F̄z1(t)− F̄z2(t)

) · ez
, (A.1)

FIG. 18. Observed coefficient of friction using the iterative method (top), the Cundall approach (middle), and
the lattice solid model approach (bottom). Stick-slip cycles became more regular after the initial events. These
initial events are different for each method, with slip seeming to occur more easily for the two first methods.
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whereτ f is the shear stress measured on the driving plates,σn is the normal stress, and̄Fzi

is given by Eq. (83).
The time step increment is allowed to range from 0.1 to 0.2 except in the Cundall approach,

where a fixed time step increment of 0.1 is used in accordance with Eq. (38). Note that from
Eq. (38), a value of1t small enough that1τ = 1t

2 < 0.14 must be chosen. However, a value
of1t = 0.1 was found to be small enough to ensure numerical stability, considering the fact
that the user-defined factorc in Eq. (38) relates to the number of simultaneous contacts that
a particle can have. Since a particle interacts with a maximum of two unbonded particles
in this numerical experiment, one can use a value forc greater than that possible in 3D
simulations (c≈ 0.2 in this case).

The plot of the maximum particle velocity during a slip event using the iterative method
(Fig. 19) highlights an instability which may occur before a slip. This instability is due to
oscillation of particles between static and dynamic frictional behaviour before a slip.

In all three methods, the total energy remains constant to within 1% during the simulation.
Total energy alone cannot be used to check the physical validity of the numerical approach,
considering, for example, the fact that energy added due to a wrong value of frictional forces

FIG. 19. Maximum particle velocity using the iterative method (top), the Cundall approach (middle), and
the lattice solid model approach (bottom). A numerical instability appears when the first method is used due
to particles oscillating between static and dynamic frictional behaviour. The dynamic behaviour in the Cundall
approach seems to be different from that of the other two methods. This is presumably because particles in static
frictional contact in these methods are seen as having high shear stiffness whereas the use ofKs= 1 in Cundall’s
method effectively introduces a shear stiffness at the particle scale.
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FIG. 20. Heat generated (fine solid line) compared to the theoretical value (bold solid line) using the iterative
method (top left), the Cundall approach (top right), and the lattice solid model approach (bottom). The numerical
error in the heat generated (dashed line) is magnified by a factor of 2. The theoretical value is computed as the
work done to move the driving plates, assuming that the horizontal stress on the plates isτ f =µσn.

will not be detected (i.e., a wrong heat is balanced by an error in kinetic energy). However,
the heat energy should always be positive for the iterative approach and the lattice solid
model, so any negative heat in the calculations provides a measure of the physical validity
(that is, the frictional force must oppose the direction of slip). For the Cundall approach,
this term relates to the energy restored by the particle shear stiffness and is indicative of an
error only if this term is excessively high. Such a measure is termed the numerical errorεh

in the heat and is computed using Eq. (94).
Figure 20 shows the actual heat, the theoretical heat, and the numerical error in heat. The

Cundall approach shows an error in the heat of 20%, which is essentially due to use of a
finite joint stiffnessKs and represents the energy absorbed or restored by the particle shear
elasticity when the contact is static.

Even though the iterative method produces approximately correct results, it is very unsta-
ble, especially when a complex fault is present. When multiple interactions occur between
particle-pairs, the algorithm does not converge, in which case the error in energy may exceed
100%.

As shown previously, the Cundall approach is stable, but the value of the joint stiffnessKs

plays an important role in the static–dynamic behaviour. The joint stiffnessKs represents
the effective shear rigidity of particles in static frictional contact when subjected to shear
forces. An infinite value ofKs will cause particles to become rigid (like particles in the
lattice solid model). Hence, when large values ofKs are used with the Cundall approach,
the results should become similar to those obtained with the lattice solid model.
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FIG. 21. Plot of the fault friction using the lattice solid model approach (solid line) and the Cundall approach
for a value ofKs= 2.0 (dotted line),Ks= 10.0 (dashed line), andKs= 100.0 (fine dashed line).

The purpose of the following numerical experiments is to determine the value ofKs that
should be used to obtain results similar to those obtained with the lattice solid model, and
the computational cost. These experiments used the setup described in Fig. 17. Different
values of the joint stiffnessKs ranging from 0.1 to 100 are used and the time step increment
is chosen according to Eq. (38). The computational cost (CPU time) and accuracy of the
results are compared with the results obtained using the lattice solid model.

As the value of the joint stiffness becomes larger, results obtained using the Cundall
approach become more like those obtained with the lattice solid model approach (Fig. 21).

FIG. 22. Precision factor of the Cundall approach plotted as a function of the joint stiffnessKs.
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FIG. 23. Comparison between the Cundall approach and the lattice solid model approach. The computational
time is plotted as a function of the joint stiffnessKs.

Figure 22 shows the precision factor between the Cundall approach and the lattice solid
model approach computed as

Pf = (εh)Cundall

(εh)LSM
, (A.2)

where the error in the heat energy using the lattice solid model((εh)LSM) is chosen as
the reference and is equal to 0.01% for this numerical experiment. This precision factor
represents the amount of slip that occurs when particles are locked by static friction (caused
by the shear deformation of the particle) and should converge to 1 as the particle becomes
more rigid. Figure 23 shows the CPU time using the Cundall approach for different values
of Ks compared with our method.

For a value ofKs greater than 100, where the precision factor is less than 200 (i.e., the
heat generated when the contact is static is less than 2%), the frictional stress becomes
almost equal to the stress computed using the lattice solid model (Fig. 21). In this case (for
a simple fault) the Cundall approach is approximately 40 times slower. If a more complex
fault is specified, the error becomes larger, and the value ofKs required to obtain similar
results becomes larger. Consequently, when “rigid” shear constraint is used, the Cundall
approach becomes excessively costly.

ACKNOWLEDGMENTS

The research was funded by the Australian Research Council. Supplementary funding was provided by The
University of Queensland (UQ), the sponsor of QUAKES. Principle computations were made using the QUAKES
12 processor, Silicon Graphics Origin 2000. Supplementary and seed computations were made using respectively
UQ’s Power Challenge, the QUAKES Power Challenge; and the CM-5 of the French National Centre for Parallel
Computing in the Earth Sciences (CNCPST). We thank P. A. Cundall for an insightful, comprehensive, and
constructive review.



372 PLACE AND MORA

REFERENCES

1. K. Aki and P. G. Richards,Quantitative Seismology: Theory and Methods(Freeman, San Francisco, 1980),
p. 4.

2. M. P. Allen and D. J. Tildesley,Computer Simulations of Liquids(Oxford Univ. Press, New York, 1987).

3. J. N. Brune, S. Brown, and P. A. Johnson, Rupture mechanism and interface separation in foam rubber
models of earthquakes: A possible solution to the heat flow paradox and the paradox of large ovethrusts,
Tectonophysics218, 59–56 (1993).

4. S. R. Brown and C. H. Scholz, Broad bandwidth study of the topography of natural rock surfaces,J. Geophys.
Res.89, 3051–3058 (1985).

5. N. H. Christ, R. Friedberg, and T. D. Lee, Random lattice field theory,Nucl. Phys. B202, 89–125 (1982).

6. P. A. Cundall and O. D. L. Strack, A discrete numerical model for granular assemblies,Géotechnique
29, 47–65 (1979).
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